ОПИСАНИЕ ТИПА СРЕДСТВА ИЗМЕРЕНИЙ

Анализатор радиосвязи МТ8820С

Назначение средства измерений

Анализатор радиосвязи MT8820C (далее в тексте- анализатор) предназначен для воспроизведения и измерения сигналов различных систем мобильной радиосвязи и используется при наладке оборудования различных радиокоммуникационных систем третьего и четвертого поколения, а также при наладке, калибровке и отыскании неисправностей мобильных телефонов.

Описание средства измерений

Конструктивно анализатор выполнен в виде моноблока, на передней панели которого расположены органы управления, разъемы для входа и выхода ВЧ сигнала, разъемы для аудиосигналов и жидкокристаллический цветной дисплей.

Анализатор может обслуживать радиокоммуникационные системы и мобильные телефоны для следующих стандартов мобильной связи: LTE FDD/TDD, W-CDMA/HSPA/HSPA Evolution/DC-HSDPA, GSM/GPRS/EGPRS, CDMA2000 1X/1xEV-DO Rev.A, TD-SCDMA/HSPA.

Анализатор состоит из следующих составных частей: базового блока, модулей оборудования различных стандартов мобильной связи и программного обеспечения. Аппаратные и программные средства для измерения параметров различных стандартов мобильной связи поставляются в составе анализатора по предварительному заказу пользователя.

Базовый блок используется для тестирования общих радиочастотных параметров и для отыскания неисправностей в мобильных телефонах. В состав базового блока анализатора входят опорный кварцевый генератор, высокочастотный генератор, гибкая и разветвленная система всплывающих меню.

Рисунок 1 – Общий вид анализатора радиосвязи.

Анализатор позволяет выполнять акустические измерения, располагая голосовыми кодеками стандартов CDMA2000, GSM, WCDMA.

Архангельск (8182)63-90-72 Астана (7172)727-132 Астрахань (8512)99-46-04 Барнаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологра (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Нжевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Краснодар (861)203-40-90 Краснодорск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81

Киргизия (996)312-96-26-47

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16

Россия (495)268-04-70 Казахстан (772)734-952-31

Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13

56 — Хаоа Челя Чере Ярос

Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-9 Тюмень (3452)66-21-18 Ульяновск (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

Сургут (3462)77-98-35

Базовый блок имеет на задней панели интерфейсы GPIB и RS-232-C. Анализатор управляется вручную или дистанционно по шине GPIB или через Ethernet-port по протоколу IP.

На задней панели имеется также разъем для подключения шнура питания, входные разъемы для подключения сигналов внешней синхронизации (BNC) и вход и выход опорной частоты, что позволяет минимизировать систематическую погрешность по частоте в процессе измерений.

Программное обеспечение

Встроенное в базовый модуль программное обеспечение (ПО) поставляется вместе с аппаратными средствами измерений для модулей различных стандартов мобильной связи по заказу пользователя. ПО принимает участие в организации и управлении процессом измерений и не влияет на метрологические характеристики анализатора радиосвязи. В таблице 1 приведены идентификационные наименования и контрольные суммы на основе трех хэш-функций для следующих стандартов мобильной связи: W-CDMA, GSM, Parallel Phone и LTE FDD.

Таблица 1

Наименова- ние про- граммного обеспечения	Идентификацион- ное наименование программного обеспечения	Номер версии (идентифика- ционный но- мер) про- граммного обеспечения	Цифровой идентифи- катор программного обеспечения (кон- трольная сумма ис- полняемого кода)	Алгоритм вычисления цифрового идентификатора программного обеспечения
Программное обеспечение анализатора радиосвязи MT8820C	MX8820C v.22.21 IPL v. 20/02 OS v. 20/01 MX882012C v.22.20 MX882013C v.22.20	1.03	CB24A12C9DFB532F 8889B0C463CA9E1E 6A5BF67D 061B6AC7B53A1163C DE0432A3B59FBE7E 5D87C89	MD5 CRC32 SHA-1

Уровень защиты программного обеспечения от непреднамеренных и преднамеренных изменений в соответствии с МИ 3286-2010 — A.

Метрологические и технические характеристики

Таблица 2

Наименование характеристики	Значение
Общие технические характеристик	И
Диапазон рабочих частот	От 30 МГц до 2,7 ГГц
Максимальный уровень входного сигнала (основной разъем)	35 дБм [*]
Характеристики основного входного/выходного разъема:	
Волновое сопротивление	50 Ом
KCBH:	
диапазон частот <1,6 ГГц	≤1,2
диапазон частот от 1,6 ГГц до 2,2 ГГц	≤1,25
диапазон частот >2,2 ГГц	≤1,3
Тип соединителя	N типа
Характеристики дополнительного разъема:	
Волновое сопротивление	50 Ом
КСВН для уровня выходного сигнала ≤ минус 10дБм	≤1,3
Тип соединителя	SMA типа

_	Всего листов 3				
Опорный кварцевый генератор					
Частота сигнала	10 МГц				
Уровень сигнала	TTL				
Отклонение частоты через 10 мин после включения питания по	≤±5×10 ⁻⁸				
отношению к опорной частоте, полученной через 24 часа после					
включения питания					
Уход частоты генератора за день по отношению к опорной час-	$\leq \pm 2 \times 10^{-8}$				
тоте, полученной через 24 часа после включения питания	10-7				
Уход частоты генератора за год по отношению к опорной час-	≤±1×10 ⁻⁷				
тоте, полученной через 24 часа после включения питания	<.510 ⁻⁸ /				
Температурный коэффициент частоты	≤±5×10 ⁻⁸ /град				
Тип соединителя	BNC				
Частота внешнего опорного генератора	10 или 13 МГц				
Уровень внешнего опорного сигнала	≥0 дБм				
Импеданс входа	50 Ом				
Тип соединителя	BNC				
Высокочастотный генератор базового б					
Диапазон частот	от 30 до 2700 МГц				
Разрешение по частоте	1 Гц				
Пределы допускаемой относительной погрешности по частоте	$\leq \pm 2 \times 10^{-8}$ /день, $\leq \pm 1 \times 10^{-7}$ /год				
Уровень выходного сигнала:	от минус 140 до минус				
Основной разъем	10 дБм				
Дополнительный разъем	от минус 130 до 0 дБм				
Разрешение по уровню	0,1 дБ				
Пределы допускаемой погрешности установки уровня по ос-					
новному разъему:					
для частоты ≥50 МГц, диапазона от минус 120 до минус	±1,0 дБ				
10 дБм, температуры от 10 до 40 °C после калибровки					
для частоты ≤50 МГц, диапазона от минус 120 до минус	±1,5 дБ				
10 дБм, температуры от 10 до 40 °C после калибровки					
Пределы допускаемой погрешности установки уровня по до-					
полнительному разъему:					
для частоты ≥50 МГц, диапазона от минус 110 до 0 дБм, темпе-	±1,0 дБ				
ратуры от 10 до 40 °C после калибровки					
для частоты ≤50 МГц, диапазона от минус 110 до 0 дБм, темпе-	±1,5 дБ				
ратуры от 10 до 40 °C после калибровки					
Уровень негармонических составляющих выходного сигнала					
при смещении ≥100 кГц	≤минус 40 дБн ^{**}				
Уровень гармонических составляющих выходного сигнала	≤минус 25 дБн				
Другие технические характеристики <u>≤минус 25 дон</u>					
Напряжение питающей сети	100/120/200/240 B				
*					
Частота питающей сети	от 47,5 до 63 Гц <300 В∙А				
Потребляемая мощность при одной установленной опции при всех установленных опциях	≤500 B·A ≤750 B·A				
Рабочие условия применения:	2130 D. A				
- температура окружающего воздуха, °С	от 0 до 50				
- относительная влажность воздуха, %	до 95				
- температура хранения/транспортирования, °С	от минус 0 до +60				
- относительная влажность при хранении, %	≤85				
Габаритные размеры (ширина × высота × длина), мм, не более	426× 221,5 × 498				
Масса при всех установленных опциях	≤30 кг				
*дБм – дБ по отношению к 1 мВт; **дБн – дБ по отношению к несущей частоте					

Знак утверждения типа

Знак утверждения типа наносится на титульный лист Руководства по эксплуатации типографским способом или специальным штампом и на переднюю панель прибора методом наклейки.

Комплектность средства измерений

Комплект поставки прибора соответствует таблице 3.

Таблица 3

Наименование	Количество	Примечание
Анализатор радиосвязи МТ8820С	1 шт.	
Шнур сетевого питания трехжильный	1 шт.	J0017F
Интерфейсный кабель	1 шт.	USB
Коаксиальный кабель 2 м	1 шт.	J0576D
Коаксиальный кабель 1 м	1 шт.	J0127A
Руководство по эксплуатации	1 экз.	W1940AF
Методика поверки	1 экз.	MT8820C.014/5MΠ
Упаковочная коробка	1 шт.	

Поверка

осуществляется в соответствии с документом МТ8820С.014/5МП «Анализатор радиосвязи МТ8820С. Методика поверки», утвержденным ФБУ «ЦСМ Московской области» 03 октября 2014 г.

Основное поверочное оборудование:

- анализатор электрических цепей векторный ZVA40, № Госреестра 37174-08, частотный диапазон от 10 МГц до 40 ГГц, погрешность измерений ±1 дБ;
- анализатор спектра Agilent E4447A, № Госреестра 39229-08, диапазон частот от 3 Γ ц до 43 Γ Γ ц, погрешность $\pm 1 \cdot 10^{-7}$;
- частотомер универсальный CNT-90XL, № Госреестра 41567-09, частотный диапазон от 0,001 Γ ц до 40 Γ Γ ц, погрешность измерения частоты $\pm 2 \cdot 10^{-7}$;
- стандарт частоты рубидиевый 725, № Госреестра 31222-06, выходные частоты 5 и $10 \text{ M}\Gamma$ ц; погрешность за год $\pm 5 \cdot 10^{-10}$;
- ваттметр поглощаемой мощности NRP-Z31, № Госреестра 43642-10, частотный диапазон от 10 МГц до 33 ГГц, диапазон измеряемых уровней мощности от $2 \cdot 10^{-7}$ до 200 мВт, погрешность ± 1 %.

Сведения о методиках (методах) измерений

Анализатор радиосвязи МТ8820С. Руководство по эксплуатации.

Нормативные и технические документы, устанавливающие требования к анализатору радиосвязи MT8820C

ГОСТ 22261-94 Средства измерений электрических и магнитных величин. Общие технические условия.

Техническая документация фирмы «Anritsu Corporation», Япония.

Рекомендации по областям применения в сфере государственного регулирования обеспечения единства измерений

Выполнение работ по оценке соответствия продукции и иных объектов обязательным требованиям в соответствии с законодательством Российской Федерации о техническом регулировании.

Архангельск (8182)63-90-72 Астана (7172)727-132 Астарахнь (8512)99-46-04 Бариаул (3852)73-04-60 Белгород (4722)40-23-64 Брянск (4832)59-03-52 Владивосток (423)249-28-31 Волгоград (844)278-03-48 Вологда (8172)26-41-59 Воронеж (473)204-51-73 Екатеринбург (343)384-55-89 Иваново (4932)77-34-06 Ижевск (3412)26-03-58 Иркутск (395)279-98-46 Казань (843)206-01-48 Калининград (4012)72-03-81 Калуга (4842)92-23-67 Кемерово (3842)65-04-62 Киров (8332)68-02-04 Красноярск (391)204-63-61 Курск (4712)77-13-04 Липецк (4742)52-20-81

Киргизия (996)312-96-26-47

Магнитогорск (3519)55-03-13 Москва (495)268-04-70 Мурманск (8152)59-64-93 Набережные Челны (8552)20-53-41 Нижний Новгород (831)429-08-12 Новокузнецк (3843)20-46-81 Новосибирск (383)227-86-73 Омск (3812)21-46-40 Орел (4862)44-53-42 Оренбург (3532)37-68-04 Пенза (8412)22-31-16

Россия (495)268-04-70

Пермь (342)205-81-47 Ростов-на-Дону (863)308-18-15 Рязань (4912)46-61-64 Самара (846)206-03-16 Санкт-Петербург (812)309-46-40 Саратов (845)249-38-78 Севастополь (8692)22-31-93 Симферополь (3652)67-13-56 Смоленск (4812)29-41-54 Сочи (862)225-72-31 Ставрополь (8652)20-65-13

Казахстан (772)734-952-31

Сургут (3462)77-98-35 Тверь (4822)63-31-35 Томск (3822)98-41-53 Тула (4872)74-02-29 Тюмень (3452)66-21-18 Ульяновек (8422)24-23-59 Уфа (347)229-48-12 Хабаровск (4212)92-98-04 Челябинск (351)202-03-61 Череповец (8202)49-02-64 Ярославль (4852)69-52-93

https://anritsu.nt-rt.ru/ || aus@nt-rt.ru